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SUMMARY 
Newton’s method and banded Gaussian elimination can be a CPU efficient method for steady-state 
solutions to two-dimensional Navier-Stokes equations. In this paper we look at techniques that increase the 
radius of convergence of Newton’s method, reduce the number of times the Jacobian must be factored, and 
simplify evaluation of the Jacobian. The driven cavity and natural convection problems are used as test 
problems, and finite volume discretization is employed. 
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INTRODUCTION 

Robust, fully implicit, direct solution techniques for solving Navier-Stokes equations have 
become increasingly popular with advances in computer technology. While direct methods 
require more computer memory than iterative methods, they provide a more dependable 
numerical alogorithm. These methods have been used for some time by the finite element 
community,’ but have only been considered recently in the finite volume community. In cases of 
non-linear, strongly coupled fluid equations, the direct methods have been shown to be more 
CPU efficient than iterative methods. In this study we use Newton’s method to solve the 
two-dimensional (2-D) driven cavity and natural convection problems using finite volume 
discretization. While previous r e ~ e a r c h ~ - ~  compared various direct methods to popular iterative 
methods, this work concentrates on improving CPU efficiency and simplifying the use of 
Newton’s method. Improved CPU efficiency is achieved by minimizing the number of times large 
Jacobian matrices must be formed and factored. Simplification is achieved by minimizing the 
programming complexity associated with forming the Jacobian matrix. The required number of 
Jacobian factors is reduced by using mesh sequencing and two different modified Newton 
iteration algorithms. Mesh sequencing can be thought of as multigrid in one direction. It serves 
the purpose of providing a good initial guess to the solution on the final grid. By modified 
Newton iteration, we refer to the use of a single Jacobian for two or more successive iterations. 
Since forming and factoring the Jacobian often account for more than 90% of the CPU time for 
a single iteration, successful use of a modified Newton iteration can lead to substantial CPU time 
savings. However, the price paid is the loss of quadratic convergence. The modified Newton 
iteration algorithms used here allow the code to determine adaptively when a new Jacobian 
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matrix must be formed and factored. As the physics of the problem becomes complex, the task of 
deriving and coding an analytical Jacobian becomes immense and error-prone. A novel imple- 
mentation and use of the numerical Jacobian is used to minimize the complexity of this task. This 
numerical evaluation is well suited for parallel vector supercomputer architecture. 

The number of researchers studying fully implicit direct solution techniques for 2-D computa- 
tional fluid dynamics is growing. Vanka,'v5 Braaten6 and MacArthur3w4 have studied direct 
solvers for the solution of incompressible Navier-Stokes equations. These studies looked at 2-D 
sudden expansion flows, driven cavity flows and natural convection flows. The Yale sparse matrix 
package (YSMP)' has been used in conjunction with an analytically derived Jacobian on a single 
computational grid. Venkatakrishnan'. and Bailey and Beam" studied direct solvers for the 
compressible Navier-Stokes equations. These studies used both Y SMP and banded LINPACK 
routines. Venkatakrishnan used a series of grids of increasing refinement to obtain a good initial 
guess on the final grid, i.e. mesh sequencing. Bailey and Beam evaluated parts of their Jacobian 
numerically. Knoll"*'2 and VuI3 used Newton's method to solve the fluid equations of the 
tokamak edge plasma. All these researchers have discussed the possibilities and benefits of 
a modified Newton iteration. However, none has implemented this idea in an adaptive fashion. 

NEWTON'S METHOD 

We are generally interested in the solution of a system of non-linear equations, which can be 
expressed as 

(1) 
Implementation of Newton's method requires use of the Jacobian matrix, J. The element J(i, j) of 
the Jacobian matrix is the derivative offi(x), with respect to thejth element of the state vector, 
x (i.e. xi). As a specific example, consider the 2-D natural convection problem. The state vector for 
this problem is defined here as 

(2) 
The components of F(x) are then some discretized form of the u-momentum equation, the 
u-momentum equation, the continuity equation and the energy equation for each computational 
cell. Thus, the rows i =  1,5,9,13, . . . of F(x) are u-momentum difference equations. The structure 
of F(x) is block pentadiagonal. The five block diagonals result from the five point difference 
stencil used in discretizing these equations. Applying Newton linearization, we must solve the 
following linearized system at each Newton iteration. 

F(x)=~fl(x),fi(x), * . * ,f,(x)l'=O. 

x={. . . , u ( i , j ) , u ( i , j ) , P ( i , j ) ,  T(i,j), u ( i + I , j ) ,  u ( i + I , j ) ,  . . . }'. 

J"8x"= -F(x")= -ran, (3) 

X"+ = bx" +x". (4) 
This iteration is continued until the norm of 6x and/or the norm of re are below some tolerance 
level. Each iteration involves the LU decomposition of J and a forwardbackward solve. 

The advantages of this algorithm are the robustness of the direct solve and the quadratic 
convergence of Newton's method. The disadvantages of the algorithm are the large memory and 
CPU time requirements for the LU decomposition, the small radius of convergence of Newton's 
method and the complicated evaluation of the Jacobian. In many instances there may also be 
a problem associated with the condition number of the Jacobian matrix. For all cases the system 
of equations being solved must be non-dimensionalized to reduce the effects of a poorly 
conditioned matrix. This is also important in the use of our numerical Jacobian and for 
monitoring convergence. 
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PERFORMANCE IMPROVEMENT AND SIMPLIFICATION TECHNIQUES 

Numerical Jacobian 

As the complexity of the physical model increases, so does the level of effort required to form 
the Jacobian matrix. Most researchers to date have relied on an analytical evaluation of the 
Jacobian. While this task can be straightforward for simple problems, it becomes increasingly 
more difficult for more complicated problems such as chemically reacting flow.14 The most 
frequent statements made against a numerically evaluated Jacobian are high CPU cost and 
reduced accuracy. We discuss here an algorithm for numerically evaluating the Jacobian which 
requires a small fraction of the total CPU time per Newton iteration and is sufficiently accurate to 
yield superlinear convergence. This algorithm allows code modifications to be performed relat- 
ively quickly and easily. The effort required to add a new equation, change an existing equa- 
tion, change the functional form of transport coefficients or change the differencing scheme is 
minimized within this algorithm. 

The numerical Jacobian involves first-order forward perturbations of statement functions. As 
an example, we demonstrate the application of this algorithm in solving the one-dimensional, 
non-linear heat conduction problem. The equation governing one-dimensional heat conduction 
is 

”( ax - K g ) = O .  ( 5 )  

We define the thermal conductivity K as follows: 

K = C  J T .  (6) 

Finite volume differencing applied to equation (3, using the grid shown in Figure 1, results in the 
following difference equation or statement function 

Te- Tp Tp- TW 
f (  Tw, Tp, Te) = - K E -  +K,------=O, 

dx dx 

where 

For this simple problem, the Jacobian is a tridiagonal matrix whose elements are given by 

(7) 
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W E 
Figure 1. Grid used with the sample onedimensional heat conduction problem 

The partial derivatives in equation (10) are evaluated numerically using finite difference approx- 
imations, i.e. 

9 (1 1) 

where E is a small perturbation. In terms of the above statement function, the elements of the 
Jacobian matrix can be computed as follows: 

DO i= 1, nx 

-= a! f (Tw,  Tp,Te++f(Tw, TP, Te) 
a Te & 

j w ( i ) =  { f [ a a *  T( i -  1)+ bb, T(i), T( i+ l)] -f[ T(i-  l), T(i), T(i+ I)]} 
/[bb* T(i-  l)+bb], 

j c  ( i )  = { f [ T(i - l), aa * T(i) + bb, T(i + 1 )] -f [ T(i - l), T( i), T(i + 1 )] } 

/ [bb* T(i)+bb] ,  

/[bb*T(i+l)+bb], 
j e ( i )  = { f [ T(i - l), T(i), aa * T (  i + 1) + bb] -f [ T(i - l), T( i), T( i + l)] } 

End Do 

where j w  ( i )  represents the finite difference approximation to af/aTw, jc ( i )  represents the finite 
difference approximation to af/aTc, and j e  ( i )  represents the finite difference approximation to 
af/dTe. To reduce function evaluations, the unperturbed function is evaluated and stored outside 
the above loop. The perturbation parameters aa and bb are defined as 

bb = sqrt (roundoff) 

aa=l+bb,  and &=bb+bb*T(.). 

Note that these parameters allow the numerical perturbation to vary proportionately with the 
state variable, yet they require a non-zero perturbation. For instance, if the state variable is zero, 
the addition of the constant bb term is necessary to ensure that a non-zero perturbation is used to 
compute this Jacobian element. Some modifications are required for boundary conditions, 
multidimensions and systems of equations. For the above example in two dimensions, a simple 
five-point difference stencil yields a Jacobian matrix with a pentadiagonal structure. The single 
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Do loop becomes a double loop over i and j ,  and two additional derivative evaluations would be 
required to account for the dependance on Tn and Ts. There would be a total of six function 
evaluations. For an extension treating a system of equations consider the 2-D driven cavity 
problem, which is governed by one continuity equation and two momentum equations. Using 
a staggered grid and power law differencing, each of the momentum equations is a function of 11 
surrounding variables while the continuity equation is a function of only four variables. Thus, 
calculating the Jacobian elements for each momentum equation in each finite volume requires 
a total of 12 function evaluations. Calculating the Jacobian elements associated with the 
continuity equation requires a total of five function evaluations per finite volume. Note that the 
Jacobian elements for each conservation equation are computed in their own subroutine to 
enhance code modularity. 

Mesh sequencing 

Mesh sequencing is used to obtain an improved initial guess on the final grid. This is important 
since Newton's method only converges if the initial guess lies within the radius of convergence.15 
Mesh sequencing is analogous to the first upward cycle of a Full MultiGrid. (FMG) algorithrn.I6 
The difference is that we use banded Gaussian elimination to solve the linearized problem on each 
grid instead of an iterative method. In this work we use bilinear interpolation to move through 
a series of uniform grids that are each generated from the previous grid by doubling the grid 
dimension in both directions. We move through this sequence of grids using an interpolated 
previous grid solution as our initial guess. 

There is a well-known combination of direct and multigrid methods where direct methods are 
used only on the coarsest grids. In this paper we are only concerned with improving the CPU 
efficiency of the direct method through the use of mesh sequencing. 

Adaptive rnodijied Newton iteration 

the beginning of the iteration, i.e. 

Use of this method is warranted when the cost of forming and factoring the Jacobian matrix is 
a significant part of the total cost of the calculation. In the test problems discussed herein, 
approximately 90% of the CPU time per iteration is spent forming and factoring the Jacobian 
matrix. Although use of the modified Newton iteration results in considerable savings in CPU 
time per iteration, more iterations may be required due to a slower convergence rate. Therefore, 
the overall computational efficiency should be measured by the total computational time 
required to obtain a converged solution. The results in the following section clearly demonstrate 
that for the test problems considered, adaptive modified Newton iteration algorithms are 
significantly more efficient than full Newton iteration. 

The difficulty in using the modified Newton iteration is in determining when a new Jacobian 
matrix should be formed and factored. Two possible criteria for making this determination are 
considered: 

(1) The first method requires the norm of the residual vector to decrease by a certain fraction 
on each modified Newton i.e. 

Modified Newton iteration requires that the Jacobian matrix be formed and factored only at 

Jo6x"= -re", (12) 
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where the vector norm is defined as 

If the inequality in equation (13) is violated, the update is rejected and a new Jacobian matrix is 
formed and factored. The value of 1/4 is not the only choice for this inequality; its use here was 
based on the results of Reference 14. 

(2) The second method uses an error estimate that sets an upper bound for the size of the 
modified Newton updates. This error estimate, derived by Smooke,14 is given by 

(15) II 6 ~ "  I1 m I hbAn 
where 

c1= 1, (1 8) 
C,= Cn- 1 +hA,- 1. (19) 

S m ~ o k e ' ~  derived this error estimate by assuming that the hypotheses of the Kantorovich 
t h e ~ r e m ' ~ * ~ *  were satisfied, namely, the inverse of the Jacobian matrix exists and its norm is 
bounded by 

11 J (xo) II 5 a, (20) 
the norm of the initial Newton update satisfies 

(1 x1-x0 (1 = I( J-'(x0)F(xo) 1) 5 b, 

and the components of F (x) have continuous second partial derivatives that satisfy, 

where 

h = abc 14. 

The matrix norm used above is defined as 
N 

These hypotheses are sufficient to guarantee convergence of the modified Newton iteration. Thus, 
equation (15) represents an upper bound for the modified Newton updates in the form of 
a polynomial in h scaled by the maximum update from the initial Newton iteration (b). This error 
estimate can be applied recursively for h = 112 since this value of h maximizes the right-hand side 
of equation (15). If the norm of the updates exceeds this upper bound, then the Kantorovich" 
hypotheses are not satisfied. Since these conditions are only sufficient for convergence, continued 
use of the modified Newton iteration may or may not yield a converged solution. If the inequality 
in equation (15) is violated, we choose to form and factor a new Jacobian matrix and to restart the 
modified Newton iteration. 
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The Jacobian matrix is often computed numerically (3) rather than analytically. This numerical 
approximation results in a perturbation in the analytic Jacobian given by 

I\ J - (xo) J ( ~ 0 ) -  I I t  m 5 6 ,  (25) 

where I is the identity matrix and E represents a measure of the numerical perturbation. Smooke 
derived an error estimate similar to equation (15) in terms of E. However, E is often difficult to 
obtain, and so we follow Smooke's practice of using equation (15) even when the Jacobian matrix 
is computed numerically. 

In summary, application of the adpative modified Newton iteration is performed on each grid, 
testing against the criteria of the selected method [i.e. using either equation (13) or (15)]. If these 
criteria are violated then a new Jacobian matrix is formed and factored, and the modified Newton 
iteration is restarted using x" as the initial solution. We have chosen to implement the two criteria 
separately in order to study their individual advantages and disadvantages. Note that more 
flexibility could be added by combining the two criteria into a single algorithm. Although not 
studied here, the algorithm could be made more conservative by requiring satisfaction of both 
criteria; while requiring the satisfaction of either criteria would presumably lead to fewer Jacobian 
formulations and factorizations in some cases. 

RESULTS 

In this section the solution procedure outlined above is applied to the well-known driven cavity 
and natural convection model problems. These model problems are used to demonstrate the 
convergence characteristics of the solution algorithm. Steady-state solutions on a 60 x 60 uniform 
grid have been obtained using power-law differen~ing'~ and a standard staggered placement of 
variables. We have used the LINPACK routines DGBFA and DGBSL for the direct matrix 
solution. The equations for the model problems are in dimensionless form which helps keep the 
condition number of the Jacobian matrix within a reasonable range. These results are presented 
below using bb = 1.0 x lo-* in the evaluation of the numerical Jacobian. The infinity norm of the 
residual vector and the update vector were required to be below 1.0 x for convergence. The 
effects of a numerically evaluated Jacobian, mesh sequencing and adaptive modified Newton 
iteration are discussed. 

Driven cavity problem 

The equations governing incompressible fluid flow in a two-dimensional driven cavity are the 
incompressible Navier-Stokes equations. These equations can be written in dimensionless form 
as 

au av 
-+--0, ax ay- 

The boundary conditions for the driven cavity problem can be expressed as 

u= 1, Y =  1, 

U=V=O, all other boundaries. 
(29) 
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Tables 1-111 show the convergence data for the solution of the driven cavity problem at 
Reynolds numbers of 500, lo00 and 5000, respectively. Each table shows the results using: (a) full 
Newton iteration on a single 60 x 60 grid; (b) full Newton iteration and mesh sequencing (grid 
dimensions of 15 x 15, 30 x 30 and 60 x 60); (c) the first modified Newton iteration method and 
mesh sequencing; (d) the second modified Newton iteration method and mesh sequencing. A zero 
initial guess was used for all variables. The number of iterations required for convergence and the 
number of times the Jacobian matrix was formed and factored on each grid are listed for each 
solution technique. The total CPU time required to obtain a converged solution on the 60 x 60 
grid is given in the last column of each table. 

Mesh sequencing uses less costly coarse grid solutions to provide an improved initial guess for 
the fine grid calculation. Comparing full Newton iteration in Table I, with and without mesh 

Table I. Solution of driven cavity problem for Re= 500 

Driven cavity problem using Newton's method 
Single precision on CRAY-XMP 2/16 

Re=500, tol=l.Ox bb=l.Ox lo-' 

Method 15 x 15 30 x 30 60x60 Total 
Iter-Fac Iter-Fac Iter-Fac CPU 

(a) Full - - 8-8 73.8 
(b) Full MS 6-6 5-5 4-4 45.7 
(c) Modified-1 9-5 7-3 7-3 32 
(d) Modified-2 34-3 9-2 13-1 14.7 

Table 11. Solution of driven cavity problem for Re= 1000 
~~ ~ ~ 

Driven cavity problem using Newton's method 
Single precision on CRAY-XMP 2/16 

Re = 1000, to1 = 1.0 x bb = 1.0 x lo-' 

Method 15 x 15 30 x 30 60 x 60 Total 
Iter-Fac Iter-Fac Iter-Fac CPU 

~~~~ ~ 

(a) Full - - - diverged 
(b) Full MS 7-7 5-5 5-5 46.7 

(d) Modified-2 16-4 20-2 8-2 21.4 
(c) Modified-1 10-5 7-3 7-3 33 

~~~ ~ 

Table 111. Solution of driven cavity problem for Re = 5000 
~~~ ~ 

Driven cavity problem using Newton's method 
Single precision on CRAY-XMP 2/16 

Re = 5000, to1 = 1.0 x bb = 1.0 x lo-' 

Method 15 x 15 30 x 30 60 x 60 
Iter-Fac Iter-Fac Iter-Fac 

- - (a) Full - 
(b) Full MS 8-8 13-13 7-7 
(c) Modified-1 11-7 19-10 11-3 
(d) Modified-2 25-5 3 1-9 12-3 

Total 
CPU 

diverged 
69.2 
37.1 
35.1 
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sequencing, shows that half as many full Newton factors are required on the finest grid when mesh 
sequencing is used. The time necessary to converge to a solution on the 60 x 60 grid was thereby 
reduced by approximately 50%. Another advantage of mesh sequencing is that it can extend the 
range of convergence of Newton’s method to finer grids by providing an initial guess that lies 
within the radius of convergence of Newton’s method. Tables I1 and I11 demonstrate that mesh 
sequencing does in fact lead to convergence in regions where full Newton iteration without mesh 
sequencing fails to converge. 

The benefits of the modified Newton iteration algorithms are also demonstrated in 
Tables 1-111. In all cases the use of these algorithms resulted in fewer full factorizations of the 
Jacobian matrix on each grid. Even though more iterations were required to obtain convergence, 
the overall CPU time was significantly reduced. Compared with full Newton iteration with mesh 
sequencing, the second modified Newton iteration algorithm reduced the CPU time by at least 
a factor of two. The use of the modified Newton iteration thereby further increased the overall 
computational efficiency of the algorithm. 

Table I shows that Method (d) significantly out-performed Method (c) for Re = 500. However, 
for higher Reynolds number problems (Re= 1000 and 5000) a similar performance was not 
observed. This inconsistent behaviour can be explained as follows. As the Reynolds number 
increases, a very thin boundary layer forms along the walls of the cavity. The initial guess supplied 
from a coarse grid cannot accurately resolve this boundary layer, and so more factorizations are 
required for convergence. Use of non-uniform grids with more resolution near the cavity walls 
would presumably eliminate this problem. 

Natural convection problem 

problem are expressed in dimensionless form as 
Using the Boussinesq approximation, the governing equations for the natural convection 

au av 
-+--0, ax ay- 

au au a p  azu a w  
ax a~ ax ax2 ay2 

av av a p  a2v azv 
ax ay  ay  ax2 ay2 

ax 

u-+ V-= --+-+- + Gr Tsinq5, 

U-+ V-= --+-+++GrTcosq5, 

aT aT 1 aZT aZT U - - + V - = -  -+- 
a Y  Pr 0 ax2 aY2 

where Ra is the Rayleigh number (Ra = Gr Pr). 
The boundary conditions for this problem are given by 

T=O, X=O,  

T=1, X=l ,  

aT 
--0, Y=O, ay- 

(33) 

dT -=o, Y=1, 
ay 

U = V=O, all boundaries. 
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A simple damping scheme has been implemented into the basic solution algorithm for the 
natural convection model problem. This scheme is based on the scalar variable temperature. 
When damping is employed, the magnitude of the temperature is not allowed to change by more 
than a specified percentage over the iteration. The update vector is then scaled to satisfy this 
temperature restriction. This scheme is adaptive in that as the true solution is approached, small 
temperature variations 120% require no scaling of the update vector. Damping was imple- 
mented, when necessary, for solutions at Rayleigh numbers of lo6 and lo7. For all cases the initial 
temperature field was set to a value of 0-5. 

Tables IV-VII show the convergence data for the solution of the natural convection problem at 
Rayleigh numbers of lo4, lo5, lo6 and lo7, respectively. The data are presented in the same form 
as the tables for the driven cavity problem. 

Comparing Methods (a) and (b) in each of these tables shows that mesh sequencing reduced the 
number of factors required on the finest grid by at least a factor of two. Note that the required 
total CPU time was reduced almost proportionately. Table VII also demonstrates that mesh 
sequencing extends the range of convergence of the full Newton’s method [Method (a)]. Even 
with damping, the full Newton’s method was not able to converge to a solution for Ra= 10’. 

Significant reductions in total CPU time were observed with the use of the modified Newton 
iteration algorithms. Only one full factorization was required on the finest grid when the modified 
Newton iteration was employed. Compared with Method (a), Table IV shows that the total CPU 

Table IV. Solutions of the natural convection problem for Ra= lo4 
~~ 

Natural convection problem using Newton’s method 
Single precision on CRAY-XMP 2/16 

Ra = 1.0 x lo‘, to1 = 1.0 x 10- ‘, bb = 1.0 x 10- 
No damping 

Method 15x 15 30 x 30 60 x 60 Total 
Iter-Fac Iter-Fac Iter-Fac CPU 

(a) Full - - 8-8 3 16.3 
(b) Full MS 8-8 4-4 44 173.26 
(c) Modified-1 9-5 6-1 5-1 47.1 
(d) Modified-2 1 6 4  6 1  5-1 47.0 

Table V. Solutions of the natural convection problem for Ra = lo5 

Natural convection problem using Newton’s method 
Single precision on CRAY-XMP 2/16 

No damping 
Ra=I.Ox lo5, tol=l*Ox lo-‘, bb=l.Ox 

Method 15 x 15 30 x 30 60x60 Total 
Iter-Fac Iter-Fac Iter-Fac CPU 

(a) Full - - 13-13 468.1 
(b) Full MS 12-12 I-5 5-5 199.6 
(c) Modified-I 15-10 10-1 6-1 45.9 
(d) Modified-2 26-8 10-1 6-1 44.7 
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time was reduced by a factor of approximately seven for Ra=104, while Tables V and VI  
demonstrate order of magnitude reductions in the total CPU time. Compared with Method (b), 
the modified Newton iteration reduced the required total CPU time by factors ranging approx- 
imately from three to four. 

Note that Methods (c) and (d) yield similar results for the natural convection problem. 
Therefore, for this problem use of Method (c) may be preferred over Method (d) because of the 
simplicity of the algorithm. 

Recall that increased CPU time and reduced accuracy are the most common statements 
against a numerically computed Jacobian. For these model problems, the fraction of the full 
iteration CPU time required to evaluate the Jacobian numerically ranged from 0.15 on the coarse 
grid to 0-05 on the fine grid. Thus, the time required to evaluate the Jacobian matrix numerically 
is a small fraction of the total time required for a full Newton iteration. In fact, the percentage 
becomes even less significant as the grid size is refined. We have also witnessed this scaling of the 
numerical Jacobian in more realistic problems such as our fluid modelling of the boundary layer 
of a tokamak fusion reactor.20 Figure 2 plots the L2 and the Linr norm of the Newton update 
vector versus the iteration count for a natural convection problem with Ra= lo5 using mesh 
sequencing and a full Newton iteration. These results are from the 60 x 60 grid. This figure 
demonstrates that the numerical Jacobian is sufficiently accurate to yield excellent convergence 
behaviour. These obserkations tend to support the use of a numerical Jacobian. 

Table VI. Solutions of the natural convection problem for Ra= lo6 

Natural convection problem using Newton's method 
Single precision on CRAY-XMP 2/16 

Temperature not allowed to change by more than 20% per iteration on first grid 
Ra= 1.0 x lo6, tol= 1.0 x bb= 1.0 x 

Method 15 x 15 30 x 30 60x60 Total 
I ter-Fac Iter-Fac Iter-Fac CPU 

- 2626 930.9 (a) Full - 
(b) Full MS 18-18 6-6 6-6 243.2 
(c) Modified-1 22-1 3 8-3 13-1 54.9 
(d) Modified-2 61-12 6 6 1  13-1 52.0 

Table VII. Solutions of the natural convection problem for Ra= lo7 

Natural convection problem using Newton's method 
Single. precision on CRAY-XMP 2/16 

Ra=l.Ox lo7, tol=l*Ox lo-', bb=l.Ox lo-' 
Temperature not allowed to change by more than 20%' per iteration on first grid 

~~~ 

Method 15 x 15 30 x 30 60x60 Total 
I tet-Fac Iter-Fac Iter-Fac CPU 

(4 Full - - - Diverged 
(b) Full MS 30-30 10-10 9-9 389.7 
(c) Modified-1 34-25 13-5 10-3 142.7 
(d) Modified-2 75-21 21-4 181-1 105.6 



460 

104 

103 

102 

101 

100 

10-1 

10 -2  

10-3 

10-4 

10-5 

10 -6  

10-7 

10-8 

10-9 

10-10 

10-11 

D. A. KNOLL AND P. R McHUGH 

Infinity norm 

I . I . I . I . I . I  

0 1 2 3 4 5 6 

E 
z 

a 

k 
0 

I 
cp 

‘0 
.I 
m 

d 

I t e r a t i o n  
Figure 2. Convergence of Newton’s method using a numerical Jacobian 

SUMMARY AND CONCLUSIONS 

Newton’s method was used to solve the two-dimensional driven cavity and natural convection 
model problems. The efficiency of Newton’s method was improved using mesh sequencing and 
modified Newton iteration. The programing complexity of evaluating the numerical Jacobian 
matrix was simplified using statement functions. It was shown that the numerical Jacobian was 
sufficiently accurate to yield a superlinear convergence rate. 

Mesh sequencing extends the range of convergence of Newton’s method by using coarse grid 
solutions to supply an initial guess that is within the radius of convergence of the fine grid. 
Additionally, with an improved initial guess Newton’s method requires fewer iterations to 
converge. Most of the work is thereby shifted to the coarse grids where the cost per iteration is 
low relative to the fine grid. 

Adaptive modified Newton iteration algorithms resulted in fewer full factorizations of the 
Jacobian matrix. Although more iterations were often required for convergence, the overall CPU 
time was reduced. Thus, the overall efficiency of the algorithm was increased. In conjunction with 
mesh sequencing, adaptive modified Newton iteration, in some cases, resulted in order of 
magnitude reductions in the total CPU time compared with the full Newton method on a single 
grid. 

Elements of the Jacobian matrix were approximated by finite differences, which were computed 
using simple forward perturbations of statement functions. Statement functions considerably 
reduced the programming complexity of forming the Jacobian matrix and also simplified code 
modifications. It was shown that the cost of forming the numerical Jacobian was negligible in 
comparison to the cost of a full Newton iteration. Excellent convergence of Newton’s method 
with a numerically computed Jacobian was also demonstrated. 
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The results show that mesh sequencing and adaptive modified Newton iteration significantly 
improve the robustness and efficiency of Newton’s method as a fully implicit direct solver for the 
two-dimensional Navier-Stokes equations. Implementation of Newton’s method may be simpli- 
fied by using statement functions to minimize the programming complexity of evaluating the 
Jacobian matrix numerically. 
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